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In this study, the physical meaning and mutual relations of multicenter bond indices arising from various
population analysis schemes is analyzed and discussed. The reported relations were numerically tested at ab
initio SCF level on a series of molecules involving the representatives of systems with classical two-center
two-electron (2c-2e) bonds as well as three-center two-electron (3c-2e) and three-center four-electron (3c-4e)
bonds. The results show that the generalized population analyses are very suitable tools for detecting the
presence and localization of multicenter bonding in moleclues.

Introduction

Quantum chemical calculations are rapidly becoming a routine
tool for obtaining the energies and the structures of both stable
and transient molecular species. Unfortunately, the increased
sophistication necessary to obtain sufficient accuracy leads to
the loss of transparency of corresponding wave functions. For
this reason, the introduction of new sophisticated computational
methods is accompanied by the parallel design of the auxiliary
procedures, allowing us to extract the structural information
hidden in the wave function and to visualize it in terms close
to classical chemical concepts of bonds, bond orders, VB
structures, etc.1-13 One of the most widely used such procedures
is the so-called population analysis and, in the years following
its first introduction by Mulliken,14 this idea was frequently
generalized and extended.15-20 One such extension concerns
the generalization toward the visualization of bonding in
molecules exceeding the ordinary scheme of well localized two-
center two-electron (2c-2e) bonds and containing such more
complex bonding patterns like three-center bonding, hyperva-
lence, etc. In recent years, it has been shown that appropriately
generalized population analyses leading to the introduction of
the so-called multicenter bond indices can be designed21-28 and,
in terms of these indices, the structure of a number of complex
molecules could indeed be understood.29-32 The common
feature of all versions of population analyses is that a certain
molecular property, usually related to density matrixes, is being
decomposed into contributions, usually associated with atoms
or their combinations. The question thus naturally can arise as
to what is the physical meaning and mutual relation of
populations resulting from various alternative procedures. The
aim in this study is just to address this question in detail.

Theoretical

As already mentioned, the idea of population analysis is based
on the partitioning of a certain molecular property into contribu-
tions usually associated with atoms or their combinations.
Depending on what quantity is subjected to such partitioning,
various types of population analysis can be introduced and,
accordingly, various types of information can be extracted from
it. The simplest quantity that was subjected to the partitioning
of population analysis is the molecular electron densityF(r).
Such analysis, first proposed by Mulliken,14 was closely related
to usual quantum chemical representation of the density function
in terms of an AO expansion.

This density satisfies the natural normalization shown in eq 2

Because each of the AO basis functions is usually localized on
a certain atom, the total number of electronsN can be
decomposed into contributions according to on which center
the AO basis functions are localized. In this way, the concept
of atomic electron densityPA as a contribution of the atom A
to the total number of electronsN could be introduced

where
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and

Another quantity that can be subjected to the partitioning of
the population analysis is the so-called exchange part of the
pair density defined at the SCF level, which is of our concern
here, by eq 6

where F1(r1,r2) is the nondiagonal element of the first-order
density matrix. This exchange density satisfies the normaliza-
tion (7)

and quite parallel to partitioning of orbital based expansion of
F(r), the individual contributions can be introduced in this case
as well. This type of analysis is in fact equivalent to the analysis
originally introduced by Wiberg3 and subsequently generalized
by Giambiagi et al. and by Mayer11,12 and the pair population
analysis recently proposed by one of us.33,34 The typical feature
of this analysis is that in contrast to the decomposition of the
electron densityF(r), where only monoatomic terms (atomic
densitiesPA) were possible, the partitioning of the exchange
density leads to mono- and biatomic contributions.

The physical meaning of biatomic terms is quite clear; they
provide the information about between which atoms the bonding
electron pairs are predominantly shared and therefore represent
the theoretical equivalent of the classical concept of bond
order.3,11,12 A little bit more complex situation is, however, with
monoatomic terms. To get monoatomic terms with clear
physical meaning, it is useful to rewrite first the normalization
in eq 8 in the form of eq 9.

Denoting now the whole complex monoatomic term asQA and
taking into account that the total number of electronsN can
also be expressed as a sum of atomic densitiesPA, the physical
meaning of the monoatomic termQA can straightforwardly be
deduced from eq 10

Referring to this equation and taking into account that the second
term on its right-hand side represents the total number of pairs
that the atom A is able to share with remaining atoms (which
is equivalent to the classical concept of valence5), then the
quantityQA can straightforwardly be interpreted as the unshared
charge on atom A. These values thus provide the information
about the eventual presence of free and core electron pairs on
atom A.

The interpretation of the physical meaning of monoatomic
terms from Mulliken and Wiberg population analysis just
presented represents, however, only one particular step in the
solution of the more general problem of mutual relation of bond

indices from the hierarchy of generalized population analy-
ses.22,23,25,27 The first step in such generalization represents the
population analysis based on the partitioning of the functional
D (r1, r2, r3), derived from the third-order density matrix

which was shown to lead to the so-called three-center bond
indices. This functional also satisfies the normalization to the
total number of electrons.

Introducing again the usual orbital expansion for the individual
termsF1 (ri,rj), the normalization (eq 12) can be rewritten in
the following form

Because of the three-index nature of this equation, the applica-
tion of the population partitioning allows one to introduce
mono-, bi-, and triatomic contributions.

The physical meaning of three-center terms is again quite clear;
they are identical with the so-called three-center bond indices24-28

and, as such, they straightforwardly detect the eventual presence
of three-center bonding in a molecule. A little bit more complex
situation is noted, however, with mono-and biatomic terms
because similar terms appeared already in the population
analysis of exchange pair density (eq 8) and the question thus
naturally arises about how they are related to the corresponding
indicesQA andWAB.

To elucidate this relationship, let us start first with the
monoatomic term∆A. For this purpose, it is necessary to write
down first the detailed expression for this term

If we now take into account that the restricted summation in eq
15 can schematically be written as

then after inserting eq 16 into eq 15 and taking into account
the idempotency of the matrixPS, the original formula eq 15
can be rewritten in the alternative form.

Taking into account that the last term on the right-hand side of
eq 17 is identical (up to a proportionality factor 1/4) with the
original heuristic definition of three-center bond indexIABC ,24-28

then eq 17 can be rewritten in the form shown in eq 19
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which clearly shows the physical meaning of the monatomic
term∆A. It is equal to “unshared “ charge on atom A corrected
by an additional term containing, together with genuine three-
center populationsIABC, also some two-center terms of the type
IABB resulting from B) C in summations (eq 19).

In a similar way it as also possible to look at the relation of
biatomic bond indexWAB to the biatomic term∆AB from the
decomposition (eq 14). The algebraic manipulations are again
similar to in the previous case so that it is not necessary to go
into details and only the final formula will be given.

As it is again possible to see, the relation betweenWAB and
∆AB is also relatively simple and, in fact, they differ only by
the correcting term that contains only genuine three-center terms
IABC. There is, however, one interesting implication resulting
from the eq 20. This implication concerns the already reported
result that in molecules well represented by localized 2c-2e
bonds, the three-center populations are negligible. From this
result it follows that if three-center bonding is not present in
the molecule, the relation between∆AB and WAB takes an
especially simple form

so that both indices are in this case entirely equivalent. This
equivalence thus also explains the existence of the approximate
normalization (eq 22) frequently observed for molecules without
three-center bonds

On the other hand, when three-center bond contributions cannot
be neglected, then neither of the populations, whetherWAB or
∆AB, can be regarded as “pure” two-center bond indices but
some contaminating three-center bonding contributions are
present in them as well.

In a similar way it would now be possible to analyze the
mutual relation of individual populations resulting from the
partitioning of higher than third-order densities. The simplest
such case corresponds to the partitioning of the functional

related to the fourth-order density matrix. This functional
satisfies the normalization (24)

and in keeping with the idea of population analysis this equation
can be decomposed to mono-, bi-, tri- and tetra-atomic popula-
tions (eq 25)

Without going into details of the necessary algebraic manipula-
tions, we present here only the final formulas for the corre-
sponding populations

The physical meaning of the tetra-atomic term is again
completely clear; it just represents the contribution from eventual
four-center bonding in the molecules. The physical meaning
of remaining terms is, however, more complex and it is evident
that these terms always contain contaminating contributions from
higher order bond effects. Thus, for example, in the case of
triatomic population∆ABC

(4) , the leading three-center component
is contaminated by the four-center terms and only if these terms
can be neglected can this population be regarded as a “net”
three-center bond index.

Having presented the necessary theoretical background, let
us now test the aforementioned partitionings by some numerical
calculations. The results of such calculations are summarized
in Tables 1 and 2.

Results and Discussion

The partitionings just presented were numerically tested on
a series of simple molecules that involved the molecules of H2O,
NH3, and CH4 as the representatives of the systems well
described by the Lewis model of localized two-center two-
electron (2c-2e) bonds, and H3

+, B2H6, allylcation, and allyl-
anion as the representatives of the systems with three-center
bonding. The calculations were performed by the ab initio
method using the program Gamess-US.35 The basis set was
6-31G** for neutral molecules and cations and 6-31G++ for
the allyl anion. For all systems, the molecules were considered
in completely optimized molecular geometries. Let us attempt
now to discuss the results of our calculations and let us start
first with the series of molecules with well-localized 2c-2e
bonds. In this case, because of absence of multicenter bonding
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TABLE 1: Calculated Values of Mono- and Biatomic
Populations for Several Selected Molecules with Well-
Localized 2c-2E Bonds

molecule fragment PA QA WAB ∆AB

H2O O 8.660 6.884
H 0.670 -0.216
OH 0.888 1.335

NH3 N 7.854 5.120
H 0.715 -0.192
NH 0.911 1.381

CH4 C 6.400 2.615
H 0.900 -0.076
CH 0.946 1.417
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interactions, the interpretation of monoatomic populationsQA

and ∆A, as well as biatomic populationsWAB and ∆AB is
especially simple. This interpretation can be best demonstrated
by comparison of the values of biatomic populations that can
be expected to satisfy the simplified relation in eq 21 and is
evident that the simple proportionality is indeed satisfied with
remarkable accuracy. Also relatively simple to interpret are the
values of unshared chargeQA, whose values qualitatively
correspond with the classically expected values 6, 4, and 2,
respectively. The actual values are always slightly higher than
these idealized limits, which can be explained by greater
electronegativity of the central atom X compared with hydrogen.

A little bit more complex, but also more interesting, situation
is with molecules containing three-center bonding. The most
interesting situation is again with biatomic termsWAB and∆AB,
which in some cases satisfy the simplified relation in eq 21,
whereas in others, the three-center terms has to be taken into
account. The factor discriminating between these two pos-
sibilities is the character of the bond. The bonds well
represented by the Lewis model of well-localized 2c-2e bonds
(e.g., the terminal BH bonds in B2H6 or CH bonds in allyl cation
or anion), satisfy the simple relation in eq 21. On the other
hand, where the biatomic fragment AB includes the atoms
involved in three-center bonding, the general relation in eq 20
has to be applied. However, the fact that three-center bonds
are usually localized only in certain parts of the molecules makes
it possible to simplify the eq 20 even further. Thus, for example,
the fragment BH involving the bridging bonds in B2H6 is a part
of three-center BHB bond and the three-center termIBHB thus
represents the only one, dominant, correcting term. The general
eq 20 thus reduces in this case to the simplified form shown in
eq 27

Similar simplified relations then hold also for remaining systems,
H3

+, allylcation, and allylanion

and because it is possible to check, the values calculated from
simplified relations in eqs 27 and 28 are indeed very close to
the exact ones. This result is very interesting because it confirms
the findings of our previous studies that three-center bonding,
if present in a molecule, is always quite strictly localized to
only certain regions in the molecule, whereas the rest of the
molecule is generally well described by classical 2c-2e bonds.
Another interesting conclusion that can be deduced from the
presented results concerns the difference in sign between three-
center termsICCC for allyl cation and allyl anion. The
interpretation of this difference was recently proposed22 in a
sense that positive three-center bond indices are to be expected
for (3c-2e) bonds, whereas negative contributions are charac-
teristic of (3c-4e) bonds. Based on this interpretation, the three-
center CCC bond in allyl cation is of the (3c-2e) type and that
in allylanion is of the (3c-4e) type.

Here it is also fair to mention that another criterion for
distinguishing between the (3c-2e) and (3c-4e) bonding was
recently proposed by Giambiagi et al.26 However, even if the
authors’ claim that the predictions of both criteria may differ,
there is no such conflict in our case.
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